6.4  Functional Dependency 301

Algorithm
6.2

Input:
Qutput:

Membership Algorithm

A set of functional dependencies F and the functional dependency X — Y.
IsX—> Y €F* ornot? ’ ‘

Compute X* using Algorithm 6.1.
fYCX*thenX—> Y € F* := true;
else X— Y € F* := false.

If G covers F and if no proper subset G'(G' C G) covers F, G is called a
nonredundant cover.

Definition:

Given a set of FDs F, we say that it is nonredundant if no p_ropér subset F’-of F
is equivalent to F, i.e., no F’ exists such that F'* = F*.

6.4.6

Given a functional dependency X — Y, where Y = A,A,A; . . . A,, the func-
tional dependency X — Y can be replaced by an equivalent set of FDs {X — A, X
— A;, X > A;, . . ., X— A} by using the inference axioms F4 and FS (additivity
and projectivity). A nontrivial FD of the form X — A; where the right-hand side has '
only one attribute is called a simple FD. Thus every set of FDs F can be replaced
by an equivalent set of FDs G where G contains only simple FDs.

Nonredundant and Minimum Covers

Given F, a set of FDs, if a proper subset F’ of F covers F (i.e., F CFand F'* =
F*), then F is redundant and we can remove some FD, say X — Y, from F to find
a nonredundant cover of F. Algorithm 6.3 finds a nonredundant cover of F. It does
so by removing one FD X — Y from F and then checking if this FD is implied by
the FD set {F — (X — Y)} by using Algorithms 6.1 and 6.2—finding the cover x*
under the set of FDs {F — X = V). If{F - X> Y)})E X—> Y, thenX —> Y
can be removed from F. Algorithm 6.3 repeats this procedure for each FD that re-
mains in F. Note that the nonredundant cover so obtained depends on the order in
which the functional dependencies are considered. Thus, starting with a set F of
functional -dependencies we can derive more than one nonredundant cover. (See Ex-
ercise 6.7.)



Chapter 6  Relational Database Design

Example 6.10 IfF = {A— BC,CD - E, E— C, D— AEH, ABH — BD, DH — BC}

6.4.7

then the FDs CD — E and DH — BC are redundant. We find that (CD)"*
under {F — (CD — E)} is equal to ABCDEH, and since the right-hand side
of the FD (CD — E) C (CD)" under {F — (CD — E)}, {F — (CD — E)}
= CD — E. We now remove this redundant FD from F and then find that
for the FD (DH — BC), (DH)"* under {F — (DH — BC)} is ABCDEH.
Since the right-hand side of the FD (DH — BC) C (DH)", the FD (DH —
BC) is also redundant. No remaining FDs can be removed from the modified
F. Thus a nonredundant cover for F is {A — BC, E — C, D — AEH, ABH
~BD}. &

If F is a set of FDs and if G is a nonredundant cover of F, then it is not true
that G has the minimum number of FDs. In fact, there may exist a cover G’ of F
that has fewer FDs than G. Thus, a minimum cover G’ of F has as small a number
of FDs as any other cover of F. It is needless to add that a minimum cover G’ of F
has no redundant FDs; however, a nonredundant cover of F need not be minimal, as
we see in Example 6.11. We will not discuss an algorithm to derive a minimum
cover in this text. The interested reader is referred to the bibliographic notes at the
end of the chapter.

Canonical Cover

A set of tunctional dependencies F, is a canonical cover if every FD in F, satisfies
the following:

1. Each FD in F, is simple. Recall that in a simple FD the right-hand side has a
single attribute, i.e., each FD is of the form X — 4.



6.4 Functional Dependency . 303

Example 6.11 IfF = {A— BC,CD— E, E— C, D— AEH, ABH — BD, DH — BC},

6.4.8

2. FornoFDX—>Awit_hZC Xis{(Fe - (X—>A)U@Z—> A}FF.In
other words, the left-hand side of each FD does not have any extraneous
attributes, or the FDs in F,_ are left reduced.

3. NoFD X — A is redundant, i.e., {F. — (X' — A)} does not logically im-
ply F.. 4

A canonical cover is sometimes called minimal.
Given. a set F of functional dependencies we can find a canonical set §
viously F, covers F.

then a nonredundant cover for F is {A — BC, E — C, D — AEH, ABH —
BD}. The FD ABH — BD can be decomposed into the FDs ABH — B and
ABH — D. Now, since the FD A — B is in F, we can left reduce these
decomposed FDs into AH'— B and AH — D. We also notice that AH — B
is redundant since the FD A — B is already in F. This gives us the canonical
coveras{A>B,A—>C,E->C,D—>A D—>E D—->H AH—D}. &

Note that if F, is a canonical cover and if we form G using the additivity axiom
isuch that the FDs with the same left-hand sides are merged into a single FD with
the right-hand sides combined), then F. and G are equivalent. However, G will
contain nonsimple FDs.

Functional Dependencies and Keys

Earlier we discussed the concept of uniquely identifying an entity within an entity
set by a key, the key being a set of attributes of the entity. A relation scheme R has
a similar concept, which can be explained using functional dependencies.

Definition:

Given a relation scheme R {A,A,A; . . . A,} and a set of functional dependenciés
F, a key of R is a subset of R such that K — A;A;A; . . . A, is in F* and for
any YCK,Y—>AAA;. . .A,isnotin F*,

The first requirement indicates that the dependency of all attributes of R on K
is given explicitly in F or can be logically implied from F. The second requirement
indicates that no proper subset of K can determine all the attributes of R. Thus, the
key used here is minimal with respect to this property and the FD K — R is left
reduced. A superset of K can then be called a superkey.

If there are two or more subsets of R such that the above conditions are satis-
fied, such subsets are called candidate keys. in such a case one of the candidate keys
is designated as the prnimary key or simply as the key.

We do not allow any attribute in the kev of a relation tc have a nu!l value.




304 Chapter §  Relational Database Design

. Example 6.12 If R (ABCDEH) and F = {A - BC, CD = E, E — C, D — AEH, ABH
- BD, DH — BC} then CD is a key of R because CD — ABCDEH is in
i F * (since (CD)" under F is equal to ABCDEH 'and ABCDEH C ABCDEH).
| Other candidate keys of R are AD and ED. B

Full Functional Dependency

The concept of left-reduced FDs and fully functionally dependency is defined below
and illustrated in Example 6.13.

bms m extmneous attnbuw; mb

- Example 6.13 In the relation scheme R (ABCDEH) with the FDs F = {A — BC, CD —
E, E— C, CD — AH, ABH — BD, DH — BC}, the dependency A — BC
is left reduced and BC is fully functionally dependent on A. However, the
functional dependency ABH — D is not lert reduced, the attribute B being
extraneous in this dependency. W

Prime Attribute and Nonprime Attribute

We defined the key of a relation scheme earlier. We distinguish the attributes that
participate in any such key as indicated by the following definition.

‘ofanycangadhtzkeyoftherelahon If A
i l,-A'ls caﬂeda it

Example 6.14 | If R (ABCDEH) and F = {A — BC, CD — E, E — C, AH — D}, then
AH is the only candidate key of R. The attributes A and H are prime and
the attributes B, C, D, and E are nonprime. @

Partial Dependency

Let us introduce the concept of partial dependency below. We illustrate partial de-
pendencies in Example 6.15.



6.4  Functional Dependency . 308

schemelw:ﬂlﬂwfuncuonaldependmml'deﬂmémme !
‘ Rde* awnd:dmkgy ﬁXu;pvopersub-etofKandlth

Example 6.15

|~ Name l Cowse | Grade Phone_No. Major |  Course_Depr.

(a) In the relation scheme STUDENT.COURSE_INFO(Name, Course,
Grade, Phone_No, Major, Course_Dept) with the FDs F = {Name — Phone
_NoMajor, Course — Course_Dept, NameCourse —> Grade}, NameCourse
is a candidate key, Name and Course are prime attributg.' Grade is fully
functionally dependent on the candidate key. Phone_No, Course_Dept, and
Major are partially dependent on the candidate key.

(b) Given R (A, B, C, D) and F = {AB — C, B — D}, the key of this
relation is AB and D is partially dependent on the key. W

Transitive Dependency

Another type of dependency which we have to recpgnize in database design 1s intro-
duceu below. and illustrated in Example 6.16.

Example 6.16

{a) In the relation scheme PRO¥_INFO(Prof_Name, Department, Chair-
person) and the function dependencies F = {Prof_Name — Department,



308 Chapter 6  Relational Database Design

Unnormalized Relation

Consider the table of Figure 6.9, which shows the preferences that faculty members
have for teaching courses. As before, we allow the possibility of cross-departmental
teaching. For instance, a faculty member in the Computer Science department may
have a preference for a course in the Mathematics department, and so on. The table
of Figure 6.9 is said to be unnormalized. Each row may contain multiple set of
values for some of the columns; these multiple values in a single row are also called
nonatomic values. In Figure 6.9 the row corresponding to the preferences of faculty
s in the Computer Science department has two professors. Professor Smith of the Com-
SR puter Science department prefers to teach three different courses, and Professor Clark
B prefers four,

®

_Definition:  An unnormalized relation contains nonatomic values.

"First Normal Form

The data of Figure 6.9 can be normalized into a relation, say CRS_PREF(Prof,
Course, Fac_Dept, Crs_Dept), as shown in Figure 6.10. Note that we have shown

Figure 6.9 Course preferences.

Fac_Dept Prof Course Preferences
Course Course_Dept
Comp Sci Smith -+ 353 1 Comp Sci
379 Comp Sci
221 Decision Sci
Clark 353 Comp Sci
351 Comp Sci
379 Comp Sci
456 Mathematics
Chemistry Tumner - 353 Comp Sci
. 456 Mathematics
272 Chemistry
Mathematics Jamieson 353 Comp Sci
379 Comp Sci
221 Decision Sci
456 Mathematics
\ 469 Mathematics




